

UNIVERSIDAD SIMÓN BOLÍVAR

DIVISIÓN	CIENCIAS FÍSICAS Y MATEMÁTICAS			
DEPARTAMENTO	PROCESOS Y SISTEMAS			
ASIGNATURA	SISTEMAS (PS 2315)			
HORAS/SEMANA	Т3	P1	LO	UC3
VIGENCIA	DESDE SEPTIEMBRE 2002			
REQUISITO	MA 2112			<u>. </u>

OBJETIVO GENERAL

El objetivo principal de la asignatura es la de presentar los conceptos y las herramientas analíticas necesarias para el análisis clásico de sistemas lineales continuos en el tiempo. Se enfocará principalmente en el análisis de redes eléctricas lineales y sistemas físicos sencillos para motivar y consolidar los conceptos.

PROGRAMA

- 1. Señales continuas en el tiempo
 - a. Clasificación de señales
 - b. Operaciones con señales
 - c. Señales elementales
 - d. Introducción a las funciones generalizadas
 - i. Definición y propiedades
 - ii. Impulso, escalón unitario, etc
 - e. Convolución de señales: definición y propiedades
- 2. Sistemas continuos en el tiempo
 - a. Definición y clasificación de sistemas
 - b. Interconexión de sistemas
 - c. Propiedades
 - i. Memoria
 - ii. Linealidad
 - iii. Causalidad
 - iv. Invariabilidad temporal
 - v Estabilidad
- 3. Propiedades de sistemas lineales e invariantes en el tiempo
 - a. Modelos matemáticos
 - b. Representación grafica de sistemas lineales
 - c. Respuesta al impulso
 - d. Respuesta de sistemas lineales
 - e. Propiedades de sistemas LIT
- 4. Introducción a series y transformada de Fourier continua en el tiempo

- a. Definición y propiedades
- b. Espectros de fase y amplitud
- c. Limitaciones de la transformada de Fourier
- 5. Transformada de Laplace
 - a. Definición, propiedades y ejemplos
 - b. Relación entre las transformada de Fourier y Laplace
 - c. Transformada inversa de Laplace (expansión en fracciones parciales)
- 6. Análisis de sistemas lineales usando la transformada de Laplace
 - a. Funciones de transferencia, diagramas de bloques y diagramas de flujo de señal
 - b. Polos y ceros
 - c. Respuesta temporal de sistemas: respuesta al impulso y al escalón
 - d. Estabilidad de sistemas lineales: definición y relación con la respuesta al impulso y criterio de Routh-Hurwitz
- 7. Análisis frecuencial de sistemas lineales
 - a. Respuesta frecuencial de sistemas y parámetros
 - b. Clasificación de sistemas de acuerdo a su respuesta frecuencial : Sistemas pasabajo, pasabanda, pasaalto, etc.
 - c. Diagrama polar y diagramas de Bode y parámetros de importancia.

BIBLIOGRAFÍA

- 1. Soliman, S. y M. Srinath, "Señales y Sistemas Continuos y Discretos". 2da. Ed., Prentice Hall, España, 1999.
- 2. Kamen, E. y B. Heck, "Fundamentals of Signals and Systems using MATLAB". 2da. Ed., Prentice Hall, 1997.
- 3. Oppenheim, A., A. Willsky y S. Nawab, "Signals & Systems". 2da. Ed. Prentice Hall, 1997.
- 4. Taylor, F., "Principles of Signals and Systems. Book and Disk", McGraw Hill, New York, 1994.
- 5. Buck, J., M. Daniel, y A. Singer, "Computer Explorations in Signals and Systems Using MATLAB", 2da. Ed., Prentice Hall, 2002.

DISEÑO

Yamilet Sánchez y Omar Pérez	Enero 2003

REVISIÓN

William Colmenares y José M. And	drade Abril 2004	1